Discussion 9 Worksheet
 Tangent planes (revisited) and optimization

Date: 9/22/2021
MATH 53 Multivariable Calculus

1 Tangent Plane

Find the equation of the tangent plane.
(a) $2(x-2)^{2}+(y-1)^{2}+(z-3)^{2}=10$ at $(3,3,5)$;
(b) $x y^{2} z^{3}=8$ at $(2,2,1)$;
(c) $x+y+z=e^{x y z}$ at $(0,0,1)$.
(d) Show that the equation of the tangenet plane to the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ at the point (x_{0}, y_{0}, z_{0}) can be written as

$$
\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1
$$

(e) Show that the sum of the $x-, y-$, and z-intercepts of any tangent plane to the surface $\sqrt{x}+$ $\sqrt{y}+\sqrt{z}=\sqrt{c}$ is a constant.

2 Maxima and Minima

Find the local maximum and minimum values and saddle point(s) of the function.
(a) $f(x, y)=x^{2}+y^{4}+2 x y$
(b) $f(x, y)=x y+e^{-x y}$

3 Challenge

Suppose that the direction derivatives of $f(x, y)$ are known at a given point in two nonparallel directions given by unit vectors \vec{u} and \vec{v}. Is it possible to find ∇f at this point? If so, how would you do it?

4 True/False

(a) T F A point that makes $\nabla f=\overrightarrow{0}$ corresponds to a critical point.
(b) T F If the second derivative test fails, it is impossible to say anything about the critical point in regards to it being a maxima or minima.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

